Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
3.
Am J Med ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37220832

ABSTRACT

BACKGROUND: Persistent multi-organ symptoms after coronavirus disease 2019 (COVID-19) have been termed "long COVID" or "post-acute sequelae of SARS-CoV-2 infection." The complexity of these clinical manifestations posed challenges early in the pandemic as different ambulatory models formed out of necessity to manage the influx of patients. Little is known about the characteristics and outcomes of patients seeking care at multidisciplinary post-COVID centers. METHODS: We performed a retrospective cohort study of patients evaluated at our multidisciplinary comprehensive COVID-19 center in Chicago, Ill, between May 2020 and February 2022. We analyzed specialty clinic utilization and clinical test results according to severity of acute COVID-19. RESULTS: We evaluated 1802 patients a median of 8 months from acute COVID-19 onset, including 350 post-hospitalization and 1452 non-hospitalized patients. Patients were seen in 2361 initial visits in 12 specialty clinics, with 1151 (48.8%) in neurology, 591 (25%) in pulmonology, and 284 (12%) in cardiology. Among the patients tested, 742/878 (85%) reported decreased quality of life, 284/553 (51%) had cognitive impairment, 195/434 (44.9%) had alteration of lung function, 249/299 (83.3%) had abnormal computed tomography chest scans, and 14/116 (12.1%) had elevated heart rate on rhythm monitoring. Frequency of cognitive impairment and pulmonary dysfunction was associated with severity of acute COVID-19. Non-hospitalized patients with positive SARS-CoV-2 testing had findings similar to those with negative or no test results. CONCLUSIONS: The experience at our multidisciplinary comprehensive COVID-19 center shows common utilization of multiple specialists by long COVID patients, who harbor frequent neurologic, pulmonary, and cardiologic abnormalities. Differences in post-hospitalization and non-hospitalized groups suggest distinct pathogenic mechanisms of long COVID in these populations.

5.
Nutr Clin Pract ; 37(2): 256-264, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35118712

ABSTRACT

Cystic fibrosis (CF) is a lethal, monogenic, autosomal recessive disease with manifestations in multiple organ systems, including the lungs and gastrointestinal tract, that impact adequate nutrition. This review discusses important aspects of nutrition in adults with CF with a focus on exocrine pancreatic insufficiency, CF-related diabetes, and gastrointestinal motility, as well as how advanced lung disease, CF transmembrane conductance regulator modulators, and aging impact nutrition in CF.


Subject(s)
Cystic Fibrosis , Exocrine Pancreatic Insufficiency , Nutrition Therapy , Adult , Cystic Fibrosis/complications , Cystic Fibrosis/therapy , Exocrine Pancreatic Insufficiency/etiology , Exocrine Pancreatic Insufficiency/therapy , Gastrointestinal Tract , Humans , Lung
6.
Pediatr Pulmonol ; 57 Suppl 1: S113-S117, 2022 02.
Article in English | MEDLINE | ID: mdl-34704669

ABSTRACT

Caring for people with cystic fibrosis has changed considerably since the first description of the disorder and continues to evolve in the era of highly effective modulator therapy. These new treatment advancements are resulting in improved health outcomes in an ever-growing adult population with improved long-term survival. This study explores potential comorbidities and mental health implications associated with increased longevity and survivorship. It also considers the need for further evolution in patient-centered care with an expanded healthcare team in a more virtually connected world.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Adult , Aging , Comorbidity , Cystic Fibrosis/epidemiology , Humans , Patient-Centered Care
7.
Front Immunol ; 12: 700933, 2021.
Article in English | MEDLINE | ID: mdl-34899681

ABSTRACT

Sepsis and acute lung injury (ALI) are linked to mitochondrial dysfunction; however, the underlying mechanism remains elusive. We previously reported that c-Jun N-terminal protein kinase 2 (JNK2) promotes stress-induced mitophagy by targeting small mitochondrial alternative reading frame (smARF) for ubiquitin-mediated proteasomal degradation, thereby preventing mitochondrial dysfunction and restraining inflammasome activation. Here we report that loss of JNK2 exacerbates lung inflammation and injury during sepsis and ALI in mice. JNK2 is downregulated in mice with endotoxic shock or ALI, concomitantly correlated inversely with disease severity. Small RNA sequencing revealed that miR-221-5p, which contains seed sequence matching to JNK2 mRNA 3' untranslated region (3'UTR), is upregulated in response to lipopolysaccharide, with dynamically inverse correlation with JNK2 mRNA levels. miR-221-5p targets the 3'UTR of JNK2 mRNA leading to its downregulation. Accordingly, miR-221-5p exacerbates lung inflammation and injury during sepsis in mice by targeting JNK2. Importantly, in patients with pneumonia in medical intensive care unit, JNK2 mRNA levels in alveolar macrophages flow sorted from non-bronchoscopic broncholaveolar lavage (BAL) fluid were inversely correlated strongly and significantly with the percentage of neutrophils, neutrophil and white blood cell counts in BAL fluid. Our data suggest that miR-221-5p targets JNK2 and thereby aggravates lung inflammation and injury during sepsis.


Subject(s)
Acute Lung Injury/pathology , Macrophages, Alveolar/metabolism , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Animals , Down-Regulation , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Sepsis/complications
8.
Eur Respir Rev ; 30(162)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34911696

ABSTRACT

Acute manifestations of SARS-CoV-2 infection continue to impact the lives of many across the world. Post-acute sequelae of coronavirus disease 2019 (COVID-19) may affect 10-30% of survivors of COVID-19, and post-acute sequelae of COVID-19 (PASC)-pulmonary fibrosis is a long-term outcome associated with major morbidity. Data from prior coronavirus outbreaks (severe acute respiratory syndrome and Middle East respiratory syndrome) suggest that pulmonary fibrosis will contribute to long-term respiratory morbidity, suggesting that PASC-pulmonary fibrosis should be thoroughly screened for through pulmonary function testing and cross-sectional imaging. As data accumulates on the unique pathobiologic mechanisms underlying critical COVID-19, a focus on corollaries to the subacute and chronic profibrotic phenotype must be sought as well. Key aspects of acute COVID-19 pathobiology that may account for increased rates of pulmonary fibrosis include monocyte/macrophage-T-cell circuits, profibrotic RNA transcriptomics, protracted elevated levels of inflammatory cytokines, and duration of illness and ventilation. Mechanistic understanding of PASC-pulmonary fibrosis will be central in determining therapeutic options and will ultimately play a role in transplant considerations. Well-designed cohort studies and prospective clinical registries are needed. Clinicians, researchers and healthcare systems must actively address this complication of PASC to minimise disability, maximise quality of life and confront a post-COVID-19 global health crisis.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Humans , Pandemics , Prospective Studies , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/epidemiology , Quality of Life , SARS-CoV-2
9.
Radiology ; 300(1): 190-196, 2021 07.
Article in English | MEDLINE | ID: mdl-33904771

ABSTRACT

Background Protective factors against the risk of bronchiectasis are unknown. A high level of cardiorespiratory fitness is associated with a lower risk of chronic obstructive pulmonary disease. But whether fitness relates to bronchiectasis remains, to the knowledge of the authors, unknown. Purpose To examine the association between cardiorespiratory fitness and bronchiectasis. Materials and Methods This was a secondary analysis of a prospective observational study: the Coronary Artery Risk Development in Young Adults cohort (from 1985-1986 [year 0] to 2015-2016 [year 30]). During a 30-year period, healthy participants (age at enrollment 18-30 years) underwent treadmill exercise testing at year 0 and year 20 visits. Cardiorespiratory fitness was determined according to the treadmill exercise duration. The 20-year difference in cardiorespiratory fitness was used as the fitness measurement. At year 25, chest CT was performed to assess bronchiectasis and was used as the primary outcome. Multivariable logistic models were performed to determine the association between cardiorespiratory fitness changes and bronchiectasis. Results Of 2177 selected participants (at year 0: mean age, 25 years ± 4 [standard deviation]; 1224 women), 209 (9.6%) had bronchiectasis at year 25. After adjusting for age, race-sex group, study site, body mass index, pack-years smoked, history of tuberculosis, pneumonia, asthma and myocardial infarction, peak lung function, and cardiorespiratory fitness at baseline, preservation of cardiorespiratory fitness was associated with lower odds of bronchiectasis at CT at year 25 (per 1-minute-longer treadmill duration from year 0 to year 20: odds ratio [OR], 0.88; 95% CI: 0.80, 0.98; P = .02). A consistent strong association was found when cough and phlegm were included in bronchiectasis (OR, 0.72; 95% CI: 0.59, 0.87; P < .001). Conclusion In a long-term follow-up, the preservation of cardiorespiratory fitness was associated with lower odds of bronchiectasis at CT. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Stojanovska in this issue.


Subject(s)
Bronchiectasis/diagnostic imaging , Cardiorespiratory Fitness , Tomography, X-Ray Computed , Adolescent , Adult , Bronchiectasis/epidemiology , Exercise Test , Female , Humans , Longitudinal Studies , Male , Prospective Studies , Risk Factors , United States/epidemiology , Young Adult
11.
J Cyst Fibros ; 20(2): 356-363, 2021 03.
Article in English | MEDLINE | ID: mdl-33495079

ABSTRACT

BACKGROUND: CF patients demonstrate clinical heterogeneity and much remains unknown about how to risk stratify individuals for disease progression.  The most common cystic fibrosis mutation, F508del, is a protein folding mutation that has been shown in vitro to negatively affect proteostasis and CFTR transcription. Since CFTR is expressed in the nasal epithelium, we hypothesized that by using unbiased transcriptomics we could gain clinically relevant insights about differential gene expression and heterogeneity in CF patients as well as assess proteostatic dysfunction in the nasal epithelium. METHODS: Using nasal curettage and RNA-seq we assessed differential gene expression in F508del homozygotes compared to healthy volunteers. Gene set enrichment analysis was performed using a list of known chaperones. Pilot and validation cohorts were studied. RESULTS: PCA analysis and gene expression heatmaps exhibited greater heterogeneity among CF than healthy volunteers. Differentially expressed genes were enriched for the downregulation of ciliary/microtubular genes and the upregulation of inflammatory/immune response genes in F508del homozygotes compared to healthy volunteers. Gene set analysis identified negative enrichment for chaperone genes and decreased CFTR transcription in the F508del homozygotes. We also found preliminary evidence for the recently identified ionocyte in the nasal specimens. CONCLUSION: CF patients homozygous for F508del demonstrate heterogeneous gene expression profiles, proteostatic dysregulation, and reduced CFTR transcription. Larger studies are needed to determine whether nasal epithelial gene transcription profiles can be leveraged for insights into disease heterogeneity.


Subject(s)
Cystic Fibrosis/genetics , Molecular Chaperones/metabolism , Turbinates/cytology , Adult , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Down-Regulation , Female , Gene Expression Profiling , Healthy Volunteers , Humans , Male , Mutation , Sequence Analysis, RNA , Transcriptome
13.
Sci Adv ; 6(33): eabb7238, 2020 08.
Article in English | MEDLINE | ID: mdl-32851183

ABSTRACT

Cigarette smoking, the leading cause of chronic obstructive pulmonary disease (COPD), has been implicated as a risk factor for severe disease in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we show that mice with lung epithelial cell-specific loss of function of Miz1, which we identified as a negative regulator of nuclear factor κB (NF-κB) signaling, spontaneously develop progressive age-related changes resembling COPD. Furthermore, loss of Miz1 up-regulates the expression of Ace2, the receptor for SARS-CoV-2. Concomitant partial loss of NF-κB/RelA prevented the development of COPD-like phenotype in Miz1-deficient mice. Miz1 protein levels are reduced in the lungs from patients with COPD, and in the lungs of mice exposed to chronic cigarette smoke. Our data suggest that Miz1 down-regulation-induced sustained activation of NF-κB-dependent inflammation in the lung epithelium is sufficient to induce progressive lung and airway destruction that recapitulates features of COPD, with implications for COVID-19.


Subject(s)
Epithelial Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Lung/metabolism , Peptidyl-Dipeptidase A/metabolism , Phenotype , Protein Inhibitors of Activated STAT/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Ubiquitin-Protein Ligases/genetics , Up-Regulation/genetics , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Gene Knockout Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protein Inhibitors of Activated STAT/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , SARS-CoV-2 , Signal Transduction/genetics , Smoking/adverse effects , Transcription Factor RelA/metabolism , Ubiquitin-Protein Ligases/metabolism
15.
BMC Med Genomics ; 12(1): 66, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118097

ABSTRACT

BACKGROUND: In cystic fibrosis (CF), impaired immune cell responses, driven by the dysfunctional CF transmembrane conductance regulator (CFTR) gene, may determine the disease severity but clinical heterogeneity remains a major therapeutic challenge. The characterization of molecular mechanisms underlying impaired immune responses in CF may reveal novel targets with therapeutic potential. Therefore, we utilized simultaneous RNA sequencing targeted at identifying differentially expressed genes, transcripts, and miRNAs that characterize impaired immune responses triggered by CF and its phenotypes. METHODS: Peripheral blood mononuclear cells (PBMCs) extracted from a healthy donor were stimulated with plasma from CF patients (n = 9) and healthy controls (n = 3). The PBMCs were cultured (1 × 105 cells/well) for 9 h at 37 ° C in 5% CO2. After culture, total RNA was extracted from each sample and used for simultaneous total RNA and miRNA sequencing. RESULTS: Analysis of expression signatures from peripheral blood mononuclear cells induced by plasma of CF patients and healthy controls identified 151 genes, 154 individual transcripts, and 41 miRNAs differentially expressed in CF compared to HC while the expression signatures of 285 genes, 241 individual transcripts, and seven miRNAs differed due to CF phenotypes. Top immune pathways influenced by CF included agranulocyte adhesion, diapedesis signaling, and IL17 signaling, while those influenced by CF phenotypes included natural killer cell signaling and PI3K signaling in B lymphocytes. Upstream regulator analysis indicated dysregulation of CCL5, NF-κB and IL1A due to CF while dysregulation of TREM1 and TP53 regulators were associated with CF phenotype. Five miRNAs showed inverse expression patterns with three target genes relevant in CF-associated impaired immune pathways while two miRNAs showed inverse expression patterns with two target genes relevant to a dysregulated immune pathway associated with CF phenotypes. CONCLUSIONS: Our results indicate that miRNAs and individual transcript variants are relevant molecular targets contributing to impaired immune cell responses in CF.


Subject(s)
Cystic Fibrosis/genetics , Cystic Fibrosis/immunology , Sequence Analysis, RNA , Transcription, Genetic/immunology , Adolescent , Case-Control Studies , Child , Cystic Fibrosis/blood , Female , Gene Expression Profiling , Humans , Male , MicroRNAs/genetics , Phenotype
17.
Respir Res ; 19(1): 233, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30477498

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring of the lung parenchyma, leading to respiratory failure and death. High resolution computed tomography of the chest is often diagnostic for IPF, but its cost and the risk of radiation exposure limit its use as a screening tool even in patients at high risk for the disease. In patients with lung cancer, investigators have detected transcriptional signatures of disease in airway and nasal epithelial cells distal to the site of disease that are clinically useful as screening tools. Here we assessed the feasibility of distinguishing patients with IPF from age-matched controls through transcriptomic profiling of nasal epithelial curettage samples, which can be safely and repeatedly sampled over the course of a patient's illness. We recruited 10 patients with IPF and 23 age-matched healthy control subjects. Using 3' messenger RNA sequencing (mRNA-seq), we identified 224 differentially expressed genes, most of which were upregulated in patients with IPF compared with controls. Pathway enrichment analysis revealed upregulation of pathways related to immune response and inflammatory signaling in IPF patients compared with controls. These findings support the concept that fibrosis is associated with upregulation of inflammatory pathways across the respiratory epithelium with possible implications for disease detection and pathobiology.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Inflammation Mediators/metabolism , Nasal Mucosa/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , Aged , Case-Control Studies , Cohort Studies , Female , Gene Expression Profiling/methods , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Male , Middle Aged , Nasal Mucosa/pathology
18.
Expert Rev Respir Med ; 12(9): 725-732, 2018 09.
Article in English | MEDLINE | ID: mdl-30073878

ABSTRACT

INTRODUCTION: Cystic fibrosis (CF) is the most common, life-limiting autosomal recessive disease in Caucasians, and is caused by defects in production of the CFTR ion channel. Until recently, there were no available treatments targeting the disease-causing defects in CFTR but newly developed CFTR modulators are changing the course of disease in CF. The newest modulator, tezacaftor, is a CFTR corrector that was recently approved by the FDA to be used in combination with the first approved CFTR potentiator, ivacaftor. Areas covered: A detailed review of the clinical trials and published literature, focusing on safety and efficacy, leading to the approval of tezacaftor in CF. Expert commentary: Recent trials have demonstrated that the combination of tezacaftor-ivacaftor is a slightly superior combination to its predecessor, lumacaftor-ivacaftor, with respect to an increase in FEV1, adverse event profile, and drug-drug interactions. It is also approved for a large number of non-F508del, residual function mutations that are predicted to respond based on in vitro testing. The horizon for continued improvements in CFTR-targeted treatments is promising, with three-drug combinations currently in Phase 3 clinical trials, and other drugs with novel mechanisms of action being studied. Within the next 5 years, the vast majority of patients with CF are expected to have a modulator approved for their genotype.


Subject(s)
Benzodioxoles/therapeutic use , Cystic Fibrosis/drug therapy , Indoles/therapeutic use , Aminophenols/therapeutic use , Aminopyridines/therapeutic use , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Genotype , Humans , Mutation , Quinolones/therapeutic use
19.
J Biol Chem ; 293(1): 271-284, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29118187

ABSTRACT

The hypoxic response is a stress response triggered by low oxygen tension. Hypoxia-inducible factors (HIFs) play a prominent role in the pathobiology of hypoxia-associated conditions, including pulmonary hypertension (PH) and polycythemia. The c-Jun N-terminal protein kinase (JNK), a stress-activated protein kinase that consists of two ubiquitously expressed isoforms, JNK1 and JNK2, and a tissue-specific isoform, JNK3, has been shown to be activated by hypoxia. However, the physiological role of JNK1 and JNK2 in the hypoxic response remains elusive. Here, using genetic knockout cells and/or mice, we show that JNK2, but not JNK1, up-regulates the expression of HIF-1α and HIF-2α and contributes to hypoxia-induced PH and polycythemia. Knockout or silencing of JNK2, but not JNK1, prevented the accumulation of HIF-1α in hypoxia-treated cells. Loss of JNK2 resulted in a decrease in HIF-1α and HIF-2α mRNA levels under resting conditions and in response to hypoxia. Consequently, hypoxia-treated Jnk2-/- mice had reduced erythropoiesis and were less prone to polycythemia because of decreased expression of the HIF target gene erythropoietin (Epo). Jnk2-/- mice were also protected from hypoxia-induced PH, as indicated by lower right ventricular systolic pressure, a process that depends on HIF. Taken together, our results suggest that JNK2 is a positive regulator of HIFs and therefore may contribute to HIF-dependent pathologies.


Subject(s)
Cell Hypoxia/physiology , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Erythropoiesis/physiology , Erythropoietin/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 8/physiology , Mitogen-Activated Protein Kinase 9/physiology , Polycythemia/metabolism , RNA, Messenger/genetics , Transcriptional Activation , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...